Localized drug delivery using crosslinked gelatin gels containing liposomes: Factors influencing liposome stability and drug release

Author(s):  
Valerio DiTizio ◽  
Caroline Karlgard ◽  
Lothar Lilge ◽  
Antoine E. Khoury ◽  
Marc W. Mittelman ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75004-75014 ◽  
Author(s):  
Shafiur Rahman ◽  
Renee Ormsby ◽  
Abel Santos ◽  
Gerald J. Atkins ◽  
David M. Findlay ◽  
...  

In this study, drug-releasing aluminium (Al) wire implants featuring nanoporous alumina (NPA) layers produced by different anodization approaches are systematically investigated as potential platforms for localized drug delivery and bone therapy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 916 ◽  
Author(s):  
Miguel Gisbert-Garzarán ◽  
María Vallet-Regí

Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.


2016 ◽  
Vol I (I) ◽  
pp. 1-8
Author(s):  
Hafsa Shahid ◽  
Ayesha Ahmed ◽  
Ammarah Ashraf ◽  
Nida Rashid ◽  
Mubashir Rehman

A process in which drug comes out from drug product and exposed to ADME and finally become accessible for pharmacological activity is known as drug release and mechanism involves the study of its rate and factors influencing its rate. Factors influencing the rate of drug release are drug related, polymer related and formulation variables. Drug delivery systems are discriminated on the basis of way drug is delivered, which are immediate release and modified release. Parenteral dosage forms are the most prominent among different dosage forms. The mechanisms involved in drug release are diffusion and dissolution-controlled processes. Nasal disposal basically depends on the particle size, its geometry and rate of airflow. Nasal sprays are commonly used than powders and gels. Buccal and sublingual systems show more effective drug release mechanisms than oral and transdermal systems. Main focus of paper is to elaborate different mechanisms performed by drug delivery systems for drug release.


Langmuir ◽  
2016 ◽  
Vol 32 (35) ◽  
pp. 9083-9090 ◽  
Author(s):  
Heng Liu ◽  
Yike Fu ◽  
Yangyang Li ◽  
Zhaohui Ren ◽  
Xiang Li ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 7
Author(s):  
R Nahrowi ◽  
A Setiawan ◽  
Noviany Noviany ◽  
I Sukmana ◽  
S D Yuwono

Paclitaxel is one of the cancer drugs that often used. These drug kills cancer cells byinhibiting mitotic cycle. The efficiency of paclitaxel is increased by the use ofnanomaterials as a carrier of paclitaxel. Nanomaterials can enhance encapsulationefficiency, improve the drug release to the target cell following nanomaterialdegradation, and improve local accumulation of drug in the cell through endocytosisreceptor. Nanomaterial that often used forencapsulation of paclitaxel is a polymerderived from natural resources such as cellulose. The advantages of cellulose as acarrier of paclitaxel are nontoxic, biodegradable, and very abundant from varioussources. One of the potential sources of cellulose for drug delivery system is cassavabaggase.Keywords: Paclitaxel, encapsulation, cell viability, nanocellulose


Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Sign in / Sign up

Export Citation Format

Share Document